

Welcome to Nitpicker’s documentation!

Contents:

	About Nitpicker

	Test Storing

	Nitpicker's Workflow

	Continuous Integration

Indices and tables

	Index

	Module Index

	Search Page

About Nitpicker

Nitpicker

Nitpicker is a CLI tool for QA written in Python

[image: _images/nitpicker.svg]
 [https://travis-ci.org/flipback/nitpicker]
Motivation

The project has been started to fix some problems that
many developers and testers might be familiar to:

1. QA tests are not under version control with the code. Why not?
As developers, we would like to do some review of tests like code
review. As a manger I would be calm knowing that all QA plans and cases
are stored with the code on Git repository always available.

2. QA tests stay apart from the develop cycle. I can ban a merge
request if it breaks my unit or integration tests because I see
it at once by using CI tools. I believe it is possible for manual
tests too. I want my CI tool to check if a tester do all
the needed tests.

3. A QA tool should be interactive. When you see a whole test
case with all the steps it is hard not to jump between them trying
to do test as fast as possible. When a tester is in a dialogue with
a tool and goes step-by-step, they can test more carefully. Especially,
if the tool keep time tracking automatically.

How does it work?

All your tests and run reports are stored in YAML
format with the code which they test.

project
|-src/
|-docs/
|-qa/
 |-feature_1/
 |-feature_2/
 |-plan_1/
 |-test_case1.yml
 |-test_case2.yml
 |-test_case3.yml
 |-runs/
 |-20180820_232000_run.report
 |-20180820_232010_run.report

Nitpicker provides command to create a test case:

python -m nitpicker add test_case -p feature_1.plan_1

Then you should write the case by using your favourite text editor.
It is a not bad idea to commit and push it, so your teammate can
review the case before you run the plan which the case belongs to.

Now you can run the test plan:

python -m nitpicker run feature_1.plan_1

The program runs all the cases in the interactive mode leading the
tester step by step. The results of the run will be written in
directory runs in YAML format.

After all the test cases have been run you can push the reports into the git
repo, so your CI server can check if all the test runs are passed

python -m nitpicker check --all-runs-passed

The project uses itself for testing. You can find qa directory in the repo.
Also you can run some plans for demonstration.

Installation

pip install nitpicker

or

python -m install nitpicker

Currently Nitpicker supports Python 3.3 and newer

Documentation

See the last documentation here [https://nitpicker.readthedocs.io/en/latest/].

Test Storing

Nitpicker provides storing test cases as files in YAML format:

project
|-qa/
 |-feature_1/
 |-feature_2/
 |-plan_1/
 |-test_case1.yml
 |-test_case2.yml
 |-test_case3.yml
 |-runs/
 |-20180820_232000_run.report
 |-20180820_232010_run.report

Directory qa is the root directory of all the QA tests (QA directory). It contains all tests plans and its test cases and test run reports as well. Test plans are represented by directories which include other test plans directory and test cases. So we have some hierarchy of the test plans.

Each plan contains all its run reports in directory runs.

Currently Nitpicker uses the name convention:

	A test case must have extension .yml

	A test run must end with _run and have extension .report

Test Case Format

A test case file is written in YAML format and has these following structure:

created: 2018-09-15 04:54:39
author: Aleksey Timin
email: atimin@gmail.com
description: Checking if all the last runs are passed is success
tags: commands, fuzzy
setup:
 - Run command 'python -m nitpicker -d test_qa add test_test_case -p commands'
 - Save the case without changes and close the editor
 - Run command 'python -m nitpicker -d test_qa run commands' and passed all steps
steps:
 - Run command 'python -m nitpicker -d test_qa check --all-runs-passed'
 => It should be success

teardown:
 - Delete test_qa directory

All test case files should have the following mapping:

	created - The time when the test case was created in format %Y-%m-%d %H:%M:%S

	author - The author’s name

	email - The author’s email

	description - The short description of the case that should be displayed in all reports

	tags - The tags separated by comma (not implemented yet)

	setup - The actions that should be done before the test starts

	steps - The steps that contains the tester’s actions and the expectations separated by symbol ‘=>’

	teardown - The actions that should be done after the test has been run

Test Run Format

A test run report file is generated by Nitpicker’s command run in YAML format and has the following structure:

cases:
 add_new_case.yml:
 comment: ''
 description: Add a new case
 failed_action: 'Run command ''python -m nitpicker -r test_qa add test_test_case
 -p commands'' '
 failed_reaction: ' The new case should be opened in the editor'
 failed_step: 1
 finished: '2018-09-15 05:10:52'
 started: '2018-09-15 05:08:52'
 status: failed
 add_new_case_in_force.yml:
 description: Add a new case in force mode
 finished: '2018-09-15 05:10:56'
 started: '2018-09-15 05:10:53'
 status: passed
email: atimin@gmail.com
finished: '2018-09-15 05:10:56'
started: '2018-09-15 05:08:52'
tester: Aleksey Timin

Nitpicker’s Workflow

Nitpicker is created to testers and developer have common workflow and it’s supposed that the QA
tests are stored with the source code in CVS repository and new features are developed in the separated
branches:

new_feature master
 | |
 * *
 | |
 * |
 | |
 +---------*

Step 1. Add new test cases

The tester starts their a new branch from new_feature for the new test cases and
add a new case in plan test_new_feature

git checkout -b qa_new_feature
python -m nitpicker add some_new_case -p test_new_feature

The new case is opened in a text editor and the tester fills in it with some steps
(see Test Storing). Then the new case can be committed and pushed to the repository

git add qa/test_new_feature/some_new_case.yml
git commit -m "Add some_new_case.yml"
git push origin qa_new_feature

If your team practices the code review (I hope it does), then the developer can have a look at the
cases:

qa_new_feature
 |
 * - ("Add some_new_case.yml")
 |
 | new_feature
 | |
 | * master
 | | |
 ------* *
 | |
 * |
 | |
 +---------*

A test plan can contain test cases as many as you wants. And the tester can repeat command
python -m nitpicker add for each test case or copy and rename the file of the first one.

Step 2. Run new test cases

In order to run all the created test cases in the test plan the tester must run command:

python -m nitpicker run test_new_feature

Nitpicker runs each test case in the interactive mode and the tester should answer if each step of the
test case is passed or failed. After all the cases have been run, Nitpicker creates a new run report
in directory qa/test_new_feature/runs/20180820_232000_run.report. (Note: The new report’s name
contains the time when the run was finished)

Then the tester commits the run report and push to the repository:

git add qa/test_new_feature/runs/20180820_232000_run.report
git commit -m "Run test plane 'test_new_feature'"
git push origin qa_new_feature

Wait a minute.. Why do we need to commit autogenerated data!? Because we have a CI server and
Nitpicker provides some features for it too (see Continuous Integration).

Step 3. Merging

After step 2 the repository has the following graph:

qa_new_feature
 |
 * - ("Run test plane 'test_new_feature'")
 |
 * - ("Add some_new_case.yml")
 |
 | new_feature
 | |
 | * master
 | | |
 ------* *
 | |
 * |
 | |
 +---------*

If all the tests are passed and the CI pipeline has no errors the maintainer can merge the branches
in two steps:

git fetch origin

Merge the QA branch
git checkout new_feature
git merge origin/qa_new_feature

Merge the feature branch
git checkout master
git merge qa_new_feature

git push origin master

Continuous Integration

Nitpicker has a special command to run on the side of the CI server:

python -m nitpicker check --all-runs-passed --has-new-runs

Flag –all-runs-passed provides a check if all the last run reports of the project have only
passed tests. If the check failed the program exists with error 1.

Flag –has-new-runs provides a check if the current branch has some new runs comparing
the main branch (master by default). If the check failed the program exists with error 1.

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Nitpicker’s documentation!

 		
 About Nitpicker

 		
 Nitpicker

 		
 Motivation

 		
 How does it work?

 		
 Installation

 		
 Documentation

 		
 Test Storing

 		
 Test Case Format

 		
 Test Run Format

 		
 Nitpicker's Workflow

 		
 Step 1. Add new test cases

 		
 Step 2. Run new test cases

 		
 Step 3. Merging

 		
 Continuous Integration

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

